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Using a test-particle Monte Carlo method the general features of a gas expanding 
from a circular nozzle into a vacuum were investigated. Calculations were per- 
formed by considering the flow to be uniform and axial a t  the exit plane of the 
nozzle with an exit Mach number of 3 and a throat Reynolds number of 25.  
Results are presented for the density, mean flow velocity and kinetic temperature 
of the gas. Near the axis of the jet the calculated density distributions were found 
to  agree well with those given by Robertson & Willis. Results arc also presented 
for regions far from the jet's axis where no other solution is available. 

1. Introduction 
Although the problem of the expansion of a gas from a nozzle into a vacuum 

is of considerable basic and practical interest, relatively few results describing 
such flows are available. Robertson & Willis (1971) and Peracchio (1970) obtained 
solutions applicable near the axis of the jet (6' < 40", figure I ) ,  while Grier (1969) 
presented an approximate solution which applies only a t  large distances from the 
axis (8 > 90"). No results seem to be available between these two regions. The 
objective of this investigation was to study the general features of a gas issuing 
from a nozzle into a vacuum with emphasis on the region of the flow where 
results did not exist (40" < 8 < 90"). The results presented here were generated 
by a Monte Carlo procedure. The particular problem considered is described in 
the next section. 

2. Statement of the problem 
A gas, assumed to be ideal and obeying Maxwell's inverse-fifth-power law 

of repulsion, discharges into a vacuum from a circular nozzle of radius re (figure 1) .  
The gas density n,, mean flow velocity u, and the temperature T, over the exit 
plane of the nozzle are taken to be uniform (i.e. boundary-layer effects are 
neglected). At the exit plane, the mean flow velocity is considered to be axial 
(i.e. u,, = u,, u,, = uOe = 0). For this problem the following quantities were de- 
termined: the molecular number density n/n,, the axial and radial components 
u,/co and u,/co of the mean flow velocity, and the axial, radial and azimuthal 

t Present address: Science Applications, Inc., P.O. Box 328, Ann Arbor, Michigan 48107. 
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FIGURE 1. The co-ordinate system used in the analysis. 

components %/To, ZITo and T6/To of the kinetic temperature. The ith component 
of the kinetic temperature is defined as nRT, = ( V ~ ) - ( V ~ ) ~ ,  where v1 is the 
molecular velocity and R is the gas constant. co is the thermal velocity 
[co = ( 2RTo)4]. The subscript zero denotes stagnation conditions. The foregoing 
quantities were evaluated as functions of the axial and radial distances 
z* = z/r,  and r* = r / re  from the centre of the exit plane of the nozzle. 

Although n,, u,, and T, are required as boundary conditions for the Monte 
Carlo solution, the problem is usually specified in terms of the Mach number M 
at the exit plane and the Reynolds number Re at the throat of the nozzle: 

M = uze/( yRT,)*, Re = mnt( Zr,) uzt/pt, ( 1 )  

The subscript t refers to  conditions at the throat. y is the ratio of specific heats, 
m is the molecular weight and p is the dynamic viscosity: 

Pt = (mRT,/[3nA2(4)II (2m/K14, (2) 

where A2(4) and K are molecular constants. If the flow is assumed to be one- 
dimensional and isentropic inside the nozzle, n,, u,, and T, can be directly related 
to M and Re. Using the isentropic relations given by Shapiro (1953), the tempera- 
ture and velocity at  the exit plane may be expressed (for y = $) as 

T,* T,/To = (1  + &M2)--1, ( 3 )  

( 4 )  u,*, 5 u,,/(~RT,)* = M [ 5 / ( 6  + 2M2)]4. 

The density at  the exit plane can be related to the density n, at the throat by the 
isentropic relation 

n, = 8n,/(3+M2)8. (5) 

nt = {RT,/[6flA2(4)1) (2mlK)3Rel(rtZC,t), (6) 

n, may be obtained from (1) and ( 2 )  : 
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FIGURE 2. Control volumes used in the calculations. 

The parameters r,, and uzt a t  the throat (where M = 1) are also obtained by 
assuming isentropic flow, i.e. 

rt/re = (A,/A,)t = 4M*/(3+M2) ,  (7) 

%/To = 8, u,tlPRTo)$ = (W (8), (9)  

(10) 

Equations (5)-(9) may be combined to yield 

n,* = n,r: = [Re/2nA9(4)] [ K * ( ~ M )  (3 +H2)]-*. 

Equations (3), (4 )  and (10) provide the necessary relationships between n,, 
T, and uze (or their dimensionless forms n,*, T,* and u;;) and Re and M .  The 
numerical value of Az(4) is 0.436. The parameter K* = (K/VZ)  (2RT0r$)-l was 
taken to be 0-01402 (Tuer & Springer 1974). 

3. Control volumes 
A control volume is defined here as that portion of the flow field which is 

being considered in any particular Monte Carlo calculation. In the present study 
six different control volumes were used (figure Z), because of the large density 
gradients present in the flow field of interest. These control volumes overlapped, 
so that the boundary conditions for adjacent control volumes could be matched. 
Control volumes A and B were used to determine the characteristics of the flow 
field near the axis; control volumes C-l' were used to  obtain details of the flow 
at large angles from the axis. 

Control volume A was divided into 132 cells in the shape of cylindrical annuli. 
Each cell had a length Az* = 0.1 and thickness Ar* = 0.1. A portion of the control 
volume consisting of a single row of ten cells was placed inside the nozzle (i.e. 
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the region -0.1 6 z* 6 0, 0 6 r* 6 1). These ten cells were used as ‘reference 
cells’ in the Monte Carlo density calculation. The densities of the gas in each 
of the reference cells were taken to be equal to the value n, at the exit plane. 
Furthermore, the flow parameters of the gas were taken to be uniform through- 
out the ten reference cells, and the velocity and temperature at  the upstream 
boundary of the reference cells (z* = -0.1, 0 6 r* < 1 )  were taken to be the 
values u,, and T, at the exit plane. 

By placing the reference cells inside the nozzle, a portion of the inside surface 
of the nozzle (r* = 1, - 0.1 < x* < 0) became a boundary of the control volume. 
For the Monte Carlo procedure the accommodation coefficient F at this surface 
must be specified. For convenience, specular reflexion (F  = 0)  was assumed. 

The upstream faces of the reference cells (z* = -0.1, 0 6 r* < I )  were em- 
ployed as ‘entrance faces’ to the control volume. The fluxes of molecules through 
each of these ten entrance faces were equal. Thus, the number Ni of test particles 
introduced into the control volume via each entrance face was proportional to 
the area of that face. In the calculations the following values were used: Ni = 18, 
54,90, 126, 162,198,234,270,306,342,fori = 1,2 ,3 ,  ..., 10, countedradiallyout- 
wards from the central entrance face. 

The flow at the ‘outer boundaries’ of this control volume (i.e. the surface 
generated by revolving bed in figure 2) was taken to be hypersonic (no incoming 

Control volumes B-P were divided into cells in the form of coaxial annuli. 
The length and thickness of the cells were Az* = 0-5 and Ar* = 0.5 in con- 
trol volume B and A 9  = 0-05 and Ar* = 0-05 in control volumes C-F. 

The ‘inner boundary conditions’ €or control volumes B and C (i.e. along bcd 
and along bc in figure 2) were determined from the results for control volume 
A .  Similarly, the results for C were used as inner boundary conditions for D 
(along b j ) ,  the results for D as inner boundary conditions for E (along mn) 
and the results for E as inner boundary conditions for F (along qr). The ‘outer 
boundary conditions’ for control volumes B-F (along surfaces befg, bhic, bklj, 
m o p  and stur ) were based on the hypersonic approximation. 

For the first run for each of these control volumes, all intermolecular collisions 
were suppressed by artificially specifying a very small density as an initial esti- 
mate in each cell. By this procedure, no other initial estimates were necessary. 

flow). 

4. Results 
The results were obtained using a test-particle Monte Carlo procedure. The 

details of this procedure have been described previously (Tuer & Springer 1974) 
and therefore are not repeated here. Results were obtained for an exit Mach 
number M = 3 and throat Reynolds number R e  = 25. These values are the same 
as those used by Robertson & Willis (1971) in their analytical solution of this 
problem. Thus, the use of these values enables us to compare some of our results 
with those of Robertson & Willis. 

The calculated density, velocity and temperature distributions are shown in 
figures 3-6. In figure 3 the density distributions calculated by Robertson & 
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FIGURE 3. Number density as a function of distance from nozzle exit. -, present results; 
_ _ _  , Robertson & Willis (1971). ( M  = 3, Re = 25.) 

Willis are also included. Note that these investigators considered only a region 
extending from the axis to about 40' from the axis, and from the nozzle out to 
about ten nozzle radii. The present density calculations agree well with those of 
Robertson & Willis. Some of the minor differences in the two sets of results may 
be attributed to the difficulty in taking readings from the small graphs presented 
by Robertson & Willis. The radial, axial and azimuthal temperature distribu- 
tions shown in figure 6 are also similar in shape to those given by Robertson & 
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FIQURE 5 .  ( a )  Axial and ( b )  radial components of the mean flow velocity as 
functions of distance from nozzle exit. ( M  = 3, R = 25.) 
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FIGURE 6. ( a )  Axial, ( b )  radial and ( c )  azimuthal components of kinetic temperature 
as functions of distance from nozzle exit. ( M  = 3, Re = 25.) 
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Willis. Unfortunately, the scales on their graphs are such that a qualitative 
comparison with the present results is not possible. Velocities were not calculated 
by Robertson & Willis. 

The flow expanding from a circular nozzle into a vacuum was also investigated 
by Grier (1969). Grier studied only the region ahead of the plane of the nozzle 
(i.e. z < 0, r/r ,  1 ;  see figure I). Thus, the present results (where z > 0) cannot 
be compared directly with those of Grier. 

It is noteworthy that the density distributions calculated by the present 
Monte Carlo technique indicate gas to be present in the region beyond the 
limiting Prandtl-Meyer angle of continuum theory (figure 4). This is in qualitative 
agreement with the analytical results of Peracchio (1970) (for a two-dimensional 
nozzle) and Grier (1969), which show that gas is scattered into the region where 
continuum theory predicts a void. 

The mean flow velocity in the axial direction decreases with the angle from 
the axis (figure ha) .  Physically, this component of velocity must tend to zero 
as 90" is approached, and eventually become negative. The mean flow velocity 
in the radial direction is relatively uniform (figure 5 b ) .  

The axial component of the kinetic temperature displays a rapid decay with 
the angle 8 from the axis'(figure 6a) .  At small 8, the radial component of tempera- 
ture has a much lower value than the axial component (figure 6 b ) .  However, 
the magnitude of the radial component decays more slowly than that of the 
axial component. At large angles from the axis the radial component actually 
becomes larger than the axial one. The azimuthal component of kinetic tempera- 
ture has a completely different profile from the other two components and is 
larger than the other two a t  all angles (figure 6 c ) .  This is different from the 
behaviour of flows expanding from spherical point or cylindrical line sources, 
where a t  a given point the radial component of the temperature is always larger 
than the other two components (Bird 1970). 

Although the foregoing results are only for one representative Mach number 
and one representative Reynolds number, the results do indicate the general 
features of the flow field, including the density, velocity and temperature dis- 
tributions. It would be desirable to  extend the calculations to  other conditions 
but, owing to the expense involved (approximately 90min on the IBM 360167 
computer), additional computations have not yet been performed. 

This work was supported by the McDonnell-Douglas Astronautics Company. 
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